Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e27681, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590877

RESUMO

Background: Chronic Rhinosinusitis is a common disease in children. The main function of CFTR is to maintain the thickness of the mucous layer on the surface of the nasal mucosa. CFTR disease-causing variant can cause CFTR protein dysfunction and induce or aggravate chronic infection. However, the carrying status of the CFTR variants in the Chinese population is not clear. Objective: To study the frequency and variants of CFTR in Chinese children with CRS and to analyze the CFTR variants and the clinical characteristics and susceptibility to CRS. Methods: Whole Exome Sequencing was performed to analyze the CFTR genes in a total of 106 CRS children from the Chinese mainland area. The CFTR variants, frequency and clinical data were summarized and analyzed. Results: A total of 31 CFTR variants were detected, of which the carrying rate of 7 sites was significantly higher than that of the population database. 88 patients carried more than 2 variants. 37 people carried variants (MAF < 0.05), of which 91.89% had a history of recurrent upper respiratory infections, 16 had nasal polyps, 5 had bronchiectasis, and 1 was diagnosed with CF-related disorders. Conclusion: The carrying rate of CFTR variants in Chinese CRS children increased, and the highest rates of variants (MAF < 0.05) are p.I556V, p. E217G, c.1210-12[T]. Carrying multiple CFTR variants, especially p.E217G, p.I807 M, p.V920L and c.1210-12[T] may lead to increased susceptibility to CRS. There are CF-related disorders in patients with CRS.

2.
Insects ; 15(4)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38667424

RESUMO

In this study, the changes in the conventional nutrient and mineral compositions as well as the metabolomics characteristics of the red palm weevil (RPW) Rhynchophus ferrugineus Olivier (Curculionidae: Coleoptera) larvae at early (EL), middle (ML) and old (OL) developmental stages were investigated. Results showed that the EL and ML had the highest content of protein (53.87 g/100 g dw) and fat (67.95 g/100 g), respectively, and three kinds of RPW larvae were all found to be rich in unsaturated fatty acids (52.17-53.12%), potassium (5707.12-15,865.04 mg/kg) and phosphorus (2123.87-7728.31 mg/kg). In addition, their protein contained 17 amino acids with the largest proportion of glutamate. A total of 424 metabolites mainly including lipids and lipid-like molecules, organic acids and their derivatives, organic heterocycle compounds, alkaloids and their derivatives, etc. were identified in the RPW larvae. There was a significant enrichment in the ABC transport, citrate cycle (TCA cycle), aminoacyl-tRNA biosynthesis, and mTOR signaling pathways as the larvae grow according to the analysis results of the metabolic pathways of differential metabolites. The water extract of EL exhibited relatively higher hydroxyl, 2,2-diphenyl-1-pyrroline hydrochloride (DPPH) and 2,2'-azobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging ability with the EC50 values of 1.12 mg/mL, 11.23 mg/mL, and 2.52 mg/mL, respectively. These results contribute to a better understanding of the compositional changes of the RPW larvae during its life cycle and provide a theoretical grounding for its deep processing and high-value utilization.

3.
ACS Nano ; 18(14): 10031-10044, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547360

RESUMO

The increasing demand for improving pesticide utilization efficiency has prompted the development of sustainable, targeted, and stimuli-responsive delivery systems. Herein, a multi-stimuli-responsive nano/microcapsule bidirectional delivery system loaded with pyraclostrobin (Pyr) is prepared through interfacial cross-linking from a lignin-based Pickering emulsion template. During this process, methacrylated alkali lignin nanoparticles (LNPs) are utilized as stabilizers for the tunable oil-water (O/W) Pickering emulsion. Subsequently, a thiol-ene radical reaction occurs with the acid-labile cross-linkers at the oil-water interface, leading to the formation of lignin nano/microcapsules (LNCs) with various topological shapes. Through the investigation of the polymerization process and the structure of LNC, it was found that the amphiphilicity-driven diffusion and distribution of cyclohexanone impact the topology of LNC. The obtained Pyr@LNC exhibits high encapsulation efficiency, tunable size, and excellent UV shielding to Pyr. Additionally, the flexible topology of the Pyr@LNC shell enhances the retention and adhesion of the foliar surface. Furthermore, Pyr@LNC exhibits pH/laccase-responsive targeting against Botrytis disease, enabling the intelligent release of Pyr. The in vivo fungicidal activity shows that efficacy of Pyr@LNC is 53% ± 2% at 14 days postspraying, whereas the effectiveness of Pyr suspension concentrate is only 29% ± 4%, and the acute toxicity of Pyr@LNC to zebrafish is reduced by more than 9-fold compared with that of Pyr technical. Moreover, confocal laser scanning microscopy shows that the LNCs can be bidirectionally translocated in plants. Therefore, the topology-regulated bidirectional delivery system LNC has great practical potential for sustainable agriculture.


Assuntos
Lignina , Praguicidas , Estrobilurinas , Animais , Lignina/química , Praguicidas/farmacologia , Cápsulas/química , Emulsões/química , Peixe-Zebra , Água
4.
J Control Release ; 367: 837-847, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346502

RESUMO

Strawberry anthracnose (Colletotrichum gloeosporioides) exhibits a high pathogenicity, capable of directly infecting leaves through natural openings, resulting in devastating impacts on strawberries. Here, nanocomposite (CuS@Cu-MOF) was prepared with a high photothermal conversion efficiency of 35.3% and a strong response to near-infrared light (NIR) by locally growing CuS nanoparticles on the surface of a copper-based metal-organic framework (Cu-MOF) through in situ sulfurization. The porosity of Cu-MOF facilitated efficient encapsulation of the pesticide difenoconazole within CuS@Cu-MOF (DIF/CuS@Cu-MOF), achieving a loading potential of 19.18 ± 1.07%. Under NIR light irradiation, DIF/CuS@Cu-MOF showed an explosive release of DIF, which was 2.7 times higher than that under dark conditions. DIF/CuS@Cu-MOF exhibited a 43.9% increase in efficacy against C. gloeosporioides compared to difenoconazole microemulsion (DIF ME), demonstrating prolonged effectiveness. The EC50 values for DIF and DIF/CuS@Cu-MOF were 0.219 and 0.189 µg/mL, respectively. Confocal laser scanning microscopy demonstrated that the fluorescently labeled CuS@Cu-MOF acted as a penetrative carrier for the uptake of hyphae. Furthermore, DIF/CuS@Cu-MOF exhibited more substantial resistance to rainwater wash-off than DIF ME, with retention levels on the surfaces of cucumber leaves (hydrophilicity) and peanut leaves (hydrophobicity) increasing by 36.5-fold and 9.4-fold, respectively. These findings underscore the potential of nanocomposite to enhance pesticide utilization efficiency and leaf retention.


Assuntos
Fragaria , Nanopartículas , Praguicidas , Cobre , Raios Infravermelhos
5.
Small ; 20(8): e2305693, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37828638

RESUMO

The development of effective multifunctional nano-delivery approaches for pesticide absorption remains a challenge. Here, a dextran-based pesticide delivery system (MBD) is constructed to deliver tebuconazole for multidimensionally enhancing its effective utilization on tomato plants. Spherical MBD nanoparticles are obtained through two-step esterification of dextran, followed by tebuconazole loading using the Michael addition reaction. Confocal laser scanning microscopy shows that fluorescein isothiocyanate-labeled MBD nanoparticles can be bidirectionally transported in tomato plants and a modified quick, easy, cheap, effective, rugged, and safe-HPLC approach demonstrates the capacity to carry tebuconazole to plant tissues after 24 h of root uptake and foliar spray, respectively. Additionally, MBD nanoparticles could increase the retention of tebuconazole on tomato leaves by up to nearly 2.1 times compared with the tebuconazole technical material by measuring the tebuconazole content retained on the leaves. In vitro antifungal and pot experiments show that MBD nanoparticles improve the inhibitory effect of tebuconazole against botrytis cinerea by 58.4% and the protection against tomato gray molds by 74.9% compared with commercial suspensions. Furthermore, the MBD nanoparticles do not affect the healthy growth of tomato plants. These results underline the potential for the delivery system to provide a strategy for multidimensional enhancement of pesticide efficacy.


Assuntos
Praguicidas , Solanum lycopersicum , Dextranos , Plantas
6.
Small ; 19(23): e2207360, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36869412

RESUMO

Nature provides a successful evolutionary direction for single-celled organisms to solve complex problems and complete survival tasks - pseudopodium. Amoeba, a unicellular protozoan, can produce temporary pseudopods in any direction by controlling the directional flow of protoplasm to perform important life activities such as environmental sensing, motility, predation, and excretion. However, creating robotic systems with pseudopodia to emulate environmental adaptability and tasking capabilities of natural amoeba or amoeboid cells remains challenging. Here, this work presents a strategy that uses alternating magnetic fields to reconfigure magnetic droplet into Amoeba-like microrobot, and the mechanisms of pseudopodia generation and locomotion are analyzed. By simply adjusting the field direction, microrobots switch in monopodia, bipodia, and locomotion modes, performing all pseudopod operations such as active contraction, extension, bending, and amoeboid movement. The pseudopodia endow droplet robots with excellent maneuverability to adapt to environmental variations, including spanning 3D terrains and swimming in bulk liquids. Inspired by the "Venom," the phagocytosis and parasitic behaviors have also been investigated. Parasitic droplets inherit all the capabilities of amoeboid robot, expanding their applicable scenarios such as reagent analysis, microchemical reactions, calculi removal, and drug-mediated thrombolysis. This microrobot may provide fundamental understanding of single-celled livings, and potential applications in biotechnology and biomedicine.


Assuntos
Amoeba , Locomoção , Fenômenos Físicos , Pseudópodes , Campos Magnéticos
7.
Poult Sci ; 102(5): 102620, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36972672

RESUMO

The gamma-coronavirus infectious bronchitis virus (IBV) has a high mutation rate and mainly invades the respiratory mucosa, making it difficult to prevent and causing great economic losses. Nonstructural protein 16 (NSP16) of IBV QX also not only plays an indispensable role in virus invading but also might hugely influence the antigen's recognition and presentation ability of host BMDCs. Hence, our study tries to illustrate the underline mechanism of how NSP16 influences the immune function of BMDCs. Initially, we found that NSP16 of the QX strain significantly inhibited the antigen presentation ability and immune response of mouse BMDCs, which was stimulated by Poly (I:C) or AIV RNA. Besides mouse BMDCs, we also found that NSP16 of the QX strain also significantly stimulated the chicken BMDCs to activate the interferon signaling pathway. Furthermore, we preliminarily demonstrated that IBV QX NSP16 inhibits the antiviral system by affecting the antigen-presenting function of BMDCs.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Camundongos , Galinhas , Apresentação de Antígeno , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Interferons , Doenças das Aves Domésticas/prevenção & controle
8.
Int J Biol Macromol ; 220: 472-481, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987356

RESUMO

Lignin sulfonate (LS), a waste material from the paper pulping, was modified with benzoic anhydride to obtain benzoylated lignin sulfonates of adjustable hydrophilicity (BLS). When BLS was combined with difenoconazole (Di), a broad-spectrum fungicide, lignin-based, non-crosslinked nanoparticles were obtained either by solvent exchange or solvent evaporation. When a mass ratio of 1:5 LS: benzoic anhydride was used, the Di release from Di@BLS5 after 1248 h was ca. 74 %, while a commercial difenoconazole microemulsion (Di ME) reached 100 % already after 96 h, proving the sustained release from the lignin nanocarriers. The formulation of Di in lignin-based nanocarriers also improved the UV stability and the foliar retention of Di compared to the commercial formulation of the fungicide. Bioactivity assay showed that Di@BLS5 exhibited high activities and duration against strawberry anthracnose (Colletotrichum gloeosporioides). Overall, the construction of fungicide delivery nano-platform using BLS via a simple non-crosslinked approach is a novel and promising way to develop new formulations for nanopesticide and the development of sustainable agriculture.


Assuntos
Fungicidas Industriais , Praguicidas , Agricultura , Benzoatos , Preparações de Ação Retardada , Lignina , Solventes
9.
Carbohydr Polym ; 291: 119576, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698394

RESUMO

Dextran has emerged as a promising biopolymer carrier for controlled release formulations of pesticides. In this study, pH-sensitive acetalated dextran microparticles (Pyr@Ac-Dex) are prepared to encapsulate and control the release of pyraclostrobin (Pyr). In vitro fungicidal activity experiments showed that the prepared Pyr@Ac-Dex particles show comparable fungicidal ability against S. sclerotiorum compared to that of Pyr technical. In a 10-day pot experiment, the control efficacy of the Pyr@Ac-Dex treatment against S. sclerotiorum (77.1%) is significantly higher than that of Pyr emulsifiable concentrate (Pyr EC) treatment (42.4%). Photodegradation experiments show that compared to Pyr technical, Pyr@Ac-Dex doubles the half-life of Pyr in water. Acute toxicity experiments show that Pyr@Ac-Dex significantly reduced the acute exposure toxicity of Pyr to zebrafish. This study provides an environmentally friendly, feasible, and sustainable strategy for plant disease management.


Assuntos
Ascomicetos , Dextranos , Animais , Preparações de Ação Retardada , Estrobilurinas , Peixe-Zebra
10.
ACS Nano ; 16(2): 2762-2773, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35135193

RESUMO

Developing an effective and safe technology to control severe bacterial diseases in agriculture has attracted significant attention. Here, ZnO nanosphere and ZIF-8 are employed as core and shell, respectively, and then a pH-responsive core-shell nanocarrier (ZnO-Z) was prepared by in situ crystal growth strategy. The bactericide berberine (Ber) was further loaded to form Ber-loaded ZnO-Z (Ber@ZnO-Z) for control of tomato bacterial wilt disease. Results demonstrated that Ber@ZnO-Z could release Ber rapidly in an acidic environment, which corresponded to the pH of the soil where the tomato bacterial wilt disease often outbreak. In vitro experiments showed that the antibacterial activity of Ber@ZnO-Z was about 4.5 times and 1.8 times higher than that of Ber and ZnO-Z, respectively. It was because Ber@ZnO-Z could induce ROS generation, resulting in DNA damage, cytoplasm leakage, and membrane permeability changes so the released Ber without penetrability more easily penetrated the bacteria to achieve an efficient synergistic bactericidal effect with ZnO-Z carriers after combining with DNA. Pot experiments also showed that Ber@ZnO-Z significantly reduced disease severity with a wilt index of 45.8% on day 14 after inoculation, compared to 94.4% for the commercial berberine aqueous solution. More importantly, ZnO-Z carriers did not accumulate in aboveground parts of plants and did not affect plant growth in a short period. This work provides guidance for the effective control of soil-borne bacterial diseases and the development of sustainable agriculture.


Assuntos
Berberina , Nanosferas , Ralstonia solanacearum , Óxido de Zinco , Bactérias , Berberina/farmacologia , Concentração de Íons de Hidrogênio , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Óxido de Zinco/farmacologia
11.
ACS Nano ; 15(4): 6987-6997, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33856774

RESUMO

Using a simple one-pot method, we developed a prochloraz (Pro) and pH-jump reagent-loaded zeolitic imidazolate framework-8 (PD@ZIF-8) composite for the smart control of Sclerotinia disease. The pH-jump reagent can induce the acidic degradation of ZIF-8 using UV light to realize the controlled release of Pro. Thus, the physical properties of PD@ZIF-8, such as its release, formulation stability, and adhesion, were investigated in detail. The results showed that the quantity of Pro released by PD@ZIF-8 under UV light irradiation (365 nm) was 63.4 ± 3.5%, whereas under dark conditions, it was only 13.7 ± 0.8%. In vitro activity indicated that the EC50 of PD@ZIF-8 under UV light irradiation was 0.122 ± 0.02 µg/mL, which was not significantly different from that of Pro (0.107 ± 0.01 µg/mL). Pot experiments showed that the efficacy of PD@ZIF-8 under light irradiation was 51.2 ± 5.7% for a fungal infection at 14 days post-spraying, whereas the effectiveness of prochloraz emulsion in water was only 9.3 ± 3.3%. Furthermore, fluorescence tracking of ZIF-8 and biosafety experiments showed that ZIF-8 could be absorbed by plant leaves and transported to various parts of oilseed rape in a short period of time and that PD@ZIF-8 was relatively safe for plants and HepG2 cells. These results highlight the potential of the composite to provide efficient and smart delivery of fungicides into plants for protection against diseases and provide an idea for developing sustainable agriculture.


Assuntos
Ascomicetos , Fungicidas Industriais , Estruturas Metalorgânicas , Zeolitas , Concentração de Íons de Hidrogênio
12.
J Hazard Mater ; 403: 123654, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32814240

RESUMO

Controlled pesticide release in response to environmental stimuli by encapsulating pesticide in carrier is a feasible approach to improve the effective utilization rate. Here, a temperature-responsive release microcapsule loaded with chlorpyrifos (CPF@CM) was prepared from n-hexadecane-in-water emulsions via interfacial polymerization. The microcapsule was consisted of nanofibrillated cellulose (NFC) as the shell wall material and isophorone diisocyanate (IPDI) as the crosslinker. The prepared CPF@CM had pesticide-loading efficiency (33.1 wt%) and favorable adhesion on the surface of cucumber and peanut foliage compared with conventional formulation. Additionally, CPF@CM could protect chlorpyrifos against photodegradation effectively. The in vitro release test showed that microcapsule had adjustable controlled-release characteristics with the change in temperature based on phase transition of the n-hexadecane core. Bioassay studies showed that control efficacy of CPF@CM microcapsule against P. xylostella was positively correlated with temperature because of temperature-induced changes in release rate. The acute toxicity of CPF@CM to zebrafish was reduced more than 5-fold compared with that of CPF technical. These results indicated that the microcapsule release system has great potential in the development of an effective and environmentally friendly pesticide formulation.


Assuntos
Clorpirifos , Inseticidas , Animais , Cápsulas , Celulose , Clorpirifos/toxicidade , Inseticidas/toxicidade , Controle de Pragas , Temperatura , Peixe-Zebra
13.
J Hazard Mater ; 401: 123718, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33113724

RESUMO

To alleviate the secondary risks of using metal-organic frameworks (MOFs) nanoparticles as adsorbent, a novel method of loading two MOFs (ZIF-8 or UiO66-NH2) on the carbon nanotube aerogels (MPCA) by in situ nucleation and growth of MOFs nanoparticles onto carbon nanotubes were developed. The prepared MOFs@MPCA aerogels were well characterized via SEM, TEM, EDS, FT-IR, XRD and XPS to reveal the microstructure and formation mechanism of MOF@MPCA. Besides, the hydrophilia, mechanical property and thermostability of MOF@MPCA were investigated. The results showed that MOF@MPCA had good hydrophilia, compression resilience and thermostability. The study on the ability to adsorb herbicides (chipton and alachlor) showed that the adsorption capacity of MOF@MPCA was stronger compared with single MOFs nanoparticles, which indicated that there was a synergistic effect between MOFs and MPCA. The equilibrium adsorption capacity of chipton adsorbed by UiO66-NH2@MPCA was 227.3 mg/g, and can be expediently reused for 5 cycles without a significant decrease in adsorption performance. Moreover, the results of biosafety experiments showed that MPCA can reduce the risk of MOFs nanoparticles leakage into the environment and accumulation in organisms. This work can provide a new research idea, which has potential applications to remove pollutants effectively and safely from the environment.

14.
Food Chem ; 335: 127609, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32739808

RESUMO

In this study, a fluorescence resonance energy transfer (FRET) immunoassay based on graphene oxide (GO) and up-converting nanoparticles (UCNPs) was established for rapid detection of imidacloprid, a commonly-used insecticide. Under 980 nm near-infrared light excitation, emission of UCNPs at 542 nm can be absorbed by the energy acceptor GO. The carboxyl-functionalized GO and UCNPs were coupled with competitive antigen and antibody against imidacloprid. After optimization, the FRET immunoassay showed a wide detection range of 0.08-50 ng/mL to imidacloprid, with cross-reaction toward other three neonicotinoids including imidaclothiz (74.4%), thiacloprid (36.9%) and clothianidin (31.9%). The average recoveries of spiked water, Chinese cabbage, cucumber, honey and tea samples were 76.8%-101.8%. The accuracy and reliability of the FRET immunoassay were verified by UPLC-MS/MS with a good correlation (R2 = 0.9816). In a summary, this study provides a sensitive and one-step method for monitoring imidacloprid residue in food and environmental samples within 1 h.


Assuntos
Grafite/química , Nanopartículas/química , Neonicotinoides/análise , Nitrocompostos/análise , Cromatografia Líquida , Transferência Ressonante de Energia de Fluorescência/métodos , Imunoensaio/métodos , Limite de Detecção , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Tiazóis
15.
Cell Death Dis ; 11(9): 724, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895373

RESUMO

Despite substantial advances in treating cervical cancer (CC) with surgery, radiation and chemotherapy, patients with advanced CC still have poor prognosis and significantly variable clinical outcomes due to tumor recurrence and metastasis. Therefore, to develop more efficacious and specific treatments for CC remains an unmet clinical need. In this study, by virtual screening the SPECS database, we identified multiple novel JAK inhibitor candidates and validated their antitumor drug efficacies that were particularly high against CC cell lines. AH057, the best JAK inhibitor identified, effectively blocked the JAK/STAT pathways by directly inhibiting JAK1/2 kinase activities, and led to compromised cell proliferation and invasion, increased apoptosis, arrested cell cycles, and impaired tumor progression in vitro and in vivo. Next, by screening the Selleck chemical library, we identified SGI-1027, a DNMT1 inhibitor, as the compound that displayed the highest synergy with AH057. By acting on a same set of downstream effector molecules that are dually controlled by JAK1/2 and DNMT1, the combination of AH057 with SGI-1027 potently and synergistically impaired CC cell propagation via dramatically increasing apoptotic cell death and cell-cycle arrest. These findings establish a preclinical proof of concept for combating CC by dual targeting of JAK1/2 and DNMT1, and provide support for launching a clinical trial to evaluate the efficacy and safety of this drug combination in patients with CC and other malignant tumors.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Simulação de Acoplamento Molecular/métodos , Neoplasias do Colo do Útero/genética , Proliferação de Células , Feminino , Humanos , Análise de Sobrevida , Neoplasias do Colo do Útero/mortalidade
16.
J Hazard Mater ; 384: 121408, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31677913

RESUMO

In this work, fipronil was encapsulated within ethanediamine-modified carboxymethylcellulose (ACMC) to prepare an efficient and environmentally safe pesticide formulation (ACMCF). The chemical structure, morphology, foliar adhesion, bioactivity, and soil mobility of ACMCF were also systematically investigated. Results demonstrated that fipronil was encapsulated to form microcapsules successfully. Compared with the traditional fipronil emulsion (FE), ACMCF had a relatively high retention rate on cucumber and peanut leaves. The acute contact toxicity of ACMCF (LD50 = 0.151 µg a.i./bee) toward Apis mellifera was far lower than that of FE (LD50 = 0.00204 µg a.i./bee). Biological activity surveys confirmed that ACMCF has insecticidal ability against Plutella xylostella similar to that of FE. Moreover, the leaching and migration properties of ACMCF in three different kinds soils were weaker than those of FE. These results imply that ACMCF has promising application potential in increasing the effective utilization of fipronil and reducing risk to non-target organisms and the environment.


Assuntos
Arachis , Abelhas/efeitos dos fármacos , Carboximetilcelulose Sódica , Cucumis sativus , Inseticidas , Folhas de Planta/química , Pirazóis , Animais , Carboximetilcelulose Sódica/análogos & derivados , Carboximetilcelulose Sódica/química , Carboximetilcelulose Sódica/toxicidade , Inseticidas/química , Inseticidas/toxicidade , Lepidópteros/efeitos dos fármacos , Dose Letal Mediana , Pirazóis/química , Pirazóis/toxicidade , Solo/química
17.
Sci Total Environ ; 710: 135512, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31785897

RESUMO

The excessive use of acetochlor (ACT), a commonly used herbicide with latent endocrine disrupting functions, causes surface water pollution. The efficient removal of ACT from contaminated water supplies is of paramount importance. In the current work, 3,5-Bis(trifluoromethyl)phenyl isocyanate (BTP) was successfully anchored onto Cr-MIL-101 walls via covalent incorporation to afford Cr-MIL-101-BTP as a novel adsorbent for the high-efficiency removal of ACT in aqueous solutions. The kinetic adsorption process, adsorption isotherms, adsorbent regeneration, and key parameters, such as adsorbent dosage, pH value, and ionic strength, for the adsorption of ACT were studied. Results showed that a pseudo-second-order rate equation effectively describes the adsorption kinetics. The Langmuir model exhibited a better fit to adsorption isotherm than the Freundlich model. Given the π-π stacking and hydrogen bond interaction, the adsorption capacity in Cr-MIL-101-BTP approached a maximum of 312.5 mg/g for ACT, which was considerably higher than the adsorption capacities of many other reported adsorbents. The excellent adsorption characteristics of Cr-MIL-101-BTP toward ACT were preserved in a wide pH range and high concentration of background electrolytes. In addition, the result showed that partition coefficient (PC) of Cr-MIL-101-BTP was 356.14 mg/g/µM at 5 mg/L of ACT concentration, which was found as the outperformer in all tested subjects. The ACT adsorption capacity of Cr-MIL-101-BTP at the breakthrough point was greatly influenced by initial concentration, and could be described by the Thomas model. Regeneration experiments indicated that the Cr-MIL-101-BTP was recycled at least six times without significant loss of adsorption capacity. Moreover, Cr-MIL-101-BTP did not show cytotoxic activity against the tested HepG2 cell lines and did not pose serious risks to Daphnia carinata survival (48 h LC50 = 446.6 µg/mL). These results prefigured the promising potential of Cr-MIL-101-BTP as a novel adsorbent for the efficient removal of ACT from aqueous solutions.


Assuntos
Toluidinas/isolamento & purificação , Purificação da Água , Adsorção , Cromo , Concentração de Íons de Hidrogênio , Isocianatos , Cinética , Estruturas Metalorgânicas , Água , Poluentes Químicos da Água
18.
J Agric Food Chem ; 67(42): 11577-11583, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31557026

RESUMO

Nanotechnology has provided a novel approach for the preparation of a safe and highly effective pesticide formulation. Thiazole-Zn, a widely used bactericide, was successfully prepared at nanoscale by an innovative approach of final synthesis process control. Its plausible formation mechanism based on restricted particle aggregation in a nanoreactor was elucidated. Then in order to assess the application performance of thiazole-Zn nanoparticle, the nanoformulation (NPF) was conveniently formulated. Interestingly, the physicochemical properties of NPF showed better than that of the commercial pesticide formulation (CPF) in dispersibility, wettability, spreadability, and stability. At the same time, the in vitro bioassay showed that the minimum inhibitory concentrations (MICs) of NPF against Xanthomonas oryzae pv Oryzae (XOO), Xanthomonas oryzae pv Oryzicola (XOC), Erwinia carotovora subsp. Carotovora (Jones) Holland (ECC), and Erwinia chrysanthemi pv Zeae (ECZ) were 46.88, 93.75, 93.75, and 375.00 mg/L, respectively, whereas those of CPF were 93.75, 375.00, 375.00, and 875.00 mg/L, respectively. Therefore, NPF exhibited stronger antibacterial activity against the above-mentioned pathogens. Moreover, NPF was more effective to bacterial blight of rice than CPF in field trial. As a conclusion, nanotechnology for pesticides by synthesis process control will have a potential in improving the utilization efficiency and relieving the corresponding environmental pollution.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Nanopartículas/química , Nanotecnologia/métodos , Tiadiazóis/química , Tiadiazóis/farmacologia , Erwinia/efeitos dos fármacos , Oryza/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/efeitos dos fármacos
19.
J Agric Food Chem ; 67(41): 11388-11395, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31536348

RESUMO

Venomous imported fire ants cause significant medical problems. Alkaloids are an important component of imported fire ant venom. Piperidine and piperideine alkaloids have been identified in fire ant venom. In this study, we studied the venom alkaloids of the red imported fire ant, Solenopsis invicta Buren, the black imported fire ant, Solenopsis richteri Forel, and the hybrid, S. invicta × S. richteri. Pyridine alkaloids were detected the first time in fire ants using solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (SPME-GC-MS). The thermal desorption process was manipulated to facilitate the isolation and identification of pyridine alkaloids that were coeluted with piperidine or piperideine alkaloids in GC. After SPME extraction of ant venom, we conducted a series of consecutive GC-MS injections, each with a partial desorption. Hidden pyridine alkaloid peaks were revealed after the overlapping piperidine or piperidiene alkaloid peaks had been desorbed. Using this approach, 10 2-methyl-6-alkyl (or alkenyl)pyridines (1-10) were found the first time in the venom of imported fire ants. Structures of three pyridine alkaloids were confirmed by synthesis, including 2-methyl-6-undecylpyridine (1), 2-methyl-6-tridecylpyridine (7), and 2-methyl-6-pentadecylpyridine (10). We also developed a silica gel column chromatography method to separate the pyridine alkaloids from other alkaloids. Using column chromatography and GC-MS with single ion monitoring at 107 m/z, five pyridine alkaloids were quantified for both workers and female alates of S. invicta and S. richteri.


Assuntos
Alcaloides/química , Venenos de Formiga/química , Formigas/química , Piridinas/química , Alcaloides/isolamento & purificação , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular , Piridinas/isolamento & purificação , Microextração em Fase Sólida
20.
Org Lett ; 21(12): 4411-4414, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31045374

RESUMO

This report describes the enantioselective reduction of structurally diverse α,ß-unsaturated ketones and aryl ketones by perakine reductase (PR) from Rauvolfia. This enzymatic reduction produces α-chiral allylic and aryl alcohols with excellent enantioselectivity and most of the products in satisfactory yields. Furthermore, the work demonstrates 1 mmol scale reactions for product delivery without any detrimental effect on yield and enantioselectivity. The catalytic mechanism, determined by 3D-structure-based modeling of PR and ligand complexes, is also described.


Assuntos
Aldo-Ceto Redutases/metabolismo , Cetonas/metabolismo , Rauwolfia/enzimologia , Cetonas/química , Modelos Moleculares , Estrutura Molecular , Oxirredução , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA